0=y^2-75

Simple and best practice solution for 0=y^2-75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=y^2-75 equation:



0=y^2-75
We move all terms to the left:
0-(y^2-75)=0
We add all the numbers together, and all the variables
-(y^2-75)=0
We get rid of parentheses
-y^2+75=0
We add all the numbers together, and all the variables
-1y^2+75=0
a = -1; b = 0; c = +75;
Δ = b2-4ac
Δ = 02-4·(-1)·75
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*-1}=\frac{0-10\sqrt{3}}{-2} =-\frac{10\sqrt{3}}{-2} =-\frac{5\sqrt{3}}{-1} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*-1}=\frac{0+10\sqrt{3}}{-2} =\frac{10\sqrt{3}}{-2} =\frac{5\sqrt{3}}{-1} $

See similar equations:

| -2(1-3v)=-6v-5 | | 0=-0.15x^2+x+1.2 | | 2.4≤+5.1w=4.2w-6.6 | | -6y+3(y-4)=33 | | 7x+12-5x=4(2x-3)+48 | | 1/14(x−48)=4+x | | -713=12+4x | | 12-3x=12+6x-17 | | 114(x−48)=4+x | | 4y^2=-24y | | -4.3z=7.8z+3.5 | | -9-7q=1+4q | | -2(y-2)+2y=2 | | 20=-8v+2(v+4) | | -1/5x=16 | | 0=〖-0.15x〗^2+x+1.2 | | 4^2b=1/16 | | 3+4s=7+2s | | -19=-7w+5(w-5) | | 50=7x-20 | | -19=-7w+5(w-5 | | 5v^2=10v=0 | | x+7+4x+3+90=180 | | 1-8k=5k-8 | | y=2(-9)+7 | | 6x+12=5(3x+2)-25 | | 4+3z=4-9z | | 3(4x+5)-20=10x+15 | | 440=80x | | 3(3c+1)3=4c+9 | | 3(2x-7)=10-2(5+4x) | | 5x+2=4x=-10-2 |

Equations solver categories